From the CORGIS Dataset Project
By Austin Cory Bart acbart@vt.edu
Version 2.0.0, created 3/11/2016
Tags: labor, race, age, sex, gender, america, usa, census, employed, unemployed, employability, job, work, civilian, black, white, asian, government
The Current Population Survey (CPS) is a monthly survey of households conducted by the Bureau of Census for the Bureau of Labor Statistics. It provides a comprehensive body of data on the labor force, employment, unemployment, persons not in the labor force, hours of work, earnings, and other demographic and labor force characteristics.
http://www.bls.gov/cps/home.htm
Each row represents $MISSING_FIELD.
Index | Type | Example Value |
---|---|---|
0 | dict | { } |
1 | dict | (same structure) |
2 | dict | (same structure) |
... | ... | ... |
Key | Type | Example Value | Description |
---|---|---|---|
"Month" |
int |
1
|
$MISSING_FIELD |
"Month Name" |
str |
"January"
|
$MISSING_FIELD |
"Year" |
int |
1972
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"Civilian Noninstitutional Population" |
dict | { } | |
"Not In Labor Force" |
dict | { } | |
"Civilian Labor Force" |
dict | { } | |
"Employed" |
dict | { } | |
"Unemployed" |
dict | { } |
Key | Type | Example Value | Description |
---|---|---|---|
"Asian" |
float |
0.0
|
$MISSING_FIELD |
"Black or African American" |
float |
14332.0
|
$MISSING_FIELD |
"White" |
float |
126749.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"Asian" |
float |
0.0
|
$MISSING_FIELD |
"Black or African American" |
float |
5998.0
|
$MISSING_FIELD |
"White" |
float |
0.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"Asian" |
dict | { } | |
"Black or African American" |
dict | { } | |
"White" |
dict | { } |
Key | Type | Example Value | Description |
---|---|---|---|
"Counts" |
float |
0.0
|
$MISSING_FIELD |
"Participation Rate" |
float |
0.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"Asian" |
dict | { } | |
"Black or African American" |
dict | { } | |
"White" |
dict | { } |
Key | Type | Example Value | Description |
---|---|---|---|
"Counts" |
float |
0.0
|
$MISSING_FIELD |
"Unemployment Rate" |
float |
0.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"Asian" |
dict | { } | |
"Black or African American" |
dict | { } | |
"White" |
dict | { } |
Key | Type | Example Value | Description |
---|---|---|---|
"Counts" |
float |
0.0
|
$MISSING_FIELD |
"Unemployment Rate" |
float |
0.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
8334.0
|
$MISSING_FIELD |
"Men" |
float |
4180.0
|
$MISSING_FIELD |
"Women" |
float |
3498.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
58.1
|
$MISSING_FIELD |
"Men" |
float |
76.2
|
$MISSING_FIELD |
"Women" |
float |
50.9
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
75608.0
|
$MISSING_FIELD |
"Men" |
float |
43514.0
|
$MISSING_FIELD |
"Women" |
float |
25728.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
59.7
|
$MISSING_FIELD |
"Men" |
float |
81.7
|
$MISSING_FIELD |
"Women" |
float |
42.7
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
7367.0
|
$MISSING_FIELD |
"Men" |
float |
3802.0
|
$MISSING_FIELD |
"Women" |
float |
3156.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
51.4
|
$MISSING_FIELD |
"Men" |
float |
69.3
|
$MISSING_FIELD |
"Women" |
float |
45.9
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
71169.0
|
$MISSING_FIELD |
"Men" |
float |
41418.0
|
$MISSING_FIELD |
"Women" |
float |
24403.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
56.1
|
$MISSING_FIELD |
"Men" |
float |
77.7
|
$MISSING_FIELD |
"Women" |
float |
40.5
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
967.0
|
$MISSING_FIELD |
"Men" |
float |
378.0
|
$MISSING_FIELD |
"Women" |
float |
343.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
11.6
|
$MISSING_FIELD |
"Men" |
float |
9.0
|
$MISSING_FIELD |
"Women" |
float |
9.8
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
4439.0
|
$MISSING_FIELD |
"Men" |
float |
2096.0
|
$MISSING_FIELD |
"Women" |
float |
1325.0
|
$MISSING_FIELD |
Key | Type | Example Value | Description |
---|---|---|---|
"All" |
float |
5.9
|
$MISSING_FIELD |
"Men" |
float |
4.8
|
$MISSING_FIELD |
"Women" |
float |
5.1
|
$MISSING_FIELD |
Download all of the following files.
import labor
result = labor.get_result()