labor icon

Labor Python Library

From the CORGIS Dataset Project

By Austin Cory Bart acbart@vt.edu
Version 2.0.0, created 3/11/2016
Tags: labor, race, age, sex, gender, america, usa, census, employed, unemployed, employability, job, work, civilian, black, white, asian, government

Overview

The Current Population Survey (CPS) is a monthly survey of households conducted by the Bureau of Census for the Bureau of Labor Statistics. It provides a comprehensive body of data on the labor force, employment, unemployment, persons not in the labor force, hours of work, earnings, and other demographic and labor force characteristics.

http://www.bls.gov/cps/home.htm

Explore Structure

Each row represents $MISSING_FIELD.

Index Type Example Value
0 dict { }
1 dict (same structure)
2 dict (same structure)
... ... ...
Key Type Example Value Description
"Time" dict { }
"Data" dict { }
Key Type Example Value Description
"Month" int 1 $MISSING_FIELD
"Month Name" str "January" $MISSING_FIELD
"Year" int 1972 $MISSING_FIELD
Key Type Example Value Description
"Civilian Noninstitutional Population" dict { }
"Not In Labor Force" dict { }
"Civilian Labor Force" dict { }
"Employed" dict { }
"Unemployed" dict { }
Key Type Example Value Description
"Asian" float 0.0 $MISSING_FIELD
"Black or African American" float 14332.0 $MISSING_FIELD
"White" float 126749.0 $MISSING_FIELD
Key Type Example Value Description
"Asian" float 0.0 $MISSING_FIELD
"Black or African American" float 5998.0 $MISSING_FIELD
"White" float 0.0 $MISSING_FIELD
Key Type Example Value Description
"Asian" dict { }
"Black or African American" dict { }
"White" dict { }
Key Type Example Value Description
"Counts" float 0.0 $MISSING_FIELD
"Participation Rate" float 0.0 $MISSING_FIELD
Key Type Example Value Description
"Asian" dict { }
"Black or African American" dict { }
"White" dict { }
Key Type Example Value Description
"Counts" float 0.0 $MISSING_FIELD
"Unemployment Rate" float 0.0 $MISSING_FIELD
Key Type Example Value Description
"Asian" dict { }
"Black or African American" dict { }
"White" dict { }
Key Type Example Value Description
"Counts" float 0.0 $MISSING_FIELD
"Unemployment Rate" float 0.0 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Participation Rate" dict { }
Key Type Example Value Description
"All" float 8334.0 $MISSING_FIELD
"Men" float 4180.0 $MISSING_FIELD
"Women" float 3498.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 58.1 $MISSING_FIELD
"Men" float 76.2 $MISSING_FIELD
"Women" float 50.9 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Participation Rate" dict { }
Key Type Example Value Description
"All" float 75608.0 $MISSING_FIELD
"Men" float 43514.0 $MISSING_FIELD
"Women" float 25728.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 59.7 $MISSING_FIELD
"Men" float 81.7 $MISSING_FIELD
"Women" float 42.7 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Employment-Population Ratio" dict { }
Key Type Example Value Description
"All" float 7367.0 $MISSING_FIELD
"Men" float 3802.0 $MISSING_FIELD
"Women" float 3156.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 51.4 $MISSING_FIELD
"Men" float 69.3 $MISSING_FIELD
"Women" float 45.9 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Employment-Population Ratio" dict { }
Key Type Example Value Description
"All" float 71169.0 $MISSING_FIELD
"Men" float 41418.0 $MISSING_FIELD
"Women" float 24403.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 56.1 $MISSING_FIELD
"Men" float 77.7 $MISSING_FIELD
"Women" float 40.5 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Unemployment Rate" dict { }
Key Type Example Value Description
"All" float 967.0 $MISSING_FIELD
"Men" float 378.0 $MISSING_FIELD
"Women" float 343.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 11.6 $MISSING_FIELD
"Men" float 9.0 $MISSING_FIELD
"Women" float 9.8 $MISSING_FIELD
Key Type Example Value Description
"Counts" dict { }
"Unemployment Rate" dict { }
Key Type Example Value Description
"All" float 4439.0 $MISSING_FIELD
"Men" float 2096.0 $MISSING_FIELD
"Women" float 1325.0 $MISSING_FIELD
Key Type Example Value Description
"All" float 5.9 $MISSING_FIELD
"Men" float 4.8 $MISSING_FIELD
"Women" float 5.1 $MISSING_FIELD

Downloads

Download all of the following files.

  1. labor.py
  2. labor.data

Usage

import labor
result = labor.get_result()

Documentation

get_result()
Returns a list of dictionaries representing result.